

Termodinamica

Indice:

- Calorimetro Temperatura Capacità termica Calore specifico Calore Calore Latente;
- Definizioni termodinamica Equilibrio termodinamico;
- Numero di Avogadro;
- · Gas perfetti;
- Lavoro;
- Energia interna;
- · Primo principio;
- · Calori specifici molari dei gas;
- Secondo principio macchina termica macchina frigorifera Carnot;
- Entropia espansione adiabatica libera variazione di entropia legge accrescimento Teorema di Clausius calcolo entropia;
- · Trasformazione politropica.

1 cal $\rightarrow 4186J$

$$m = V * densità$$

Calorimetro

Equivalente in acqua del calorimetro
$$ightarrow m_e = rac{m_2(T_2-T_e)+m_1(T_1-T_e)}{T_e-T_1}$$

Se il calorimetro ha una massa, allora essa si somma alla massa d'acqua. Se del calorimetro conosciamo anche il calore specifico, allora $\Rightarrow Q_{calorimetro} + Q_{acqua} + Q_{elemento} = 0$

Temperatura di equilibrio calorimetro $ightarrow T_{eq} = rac{m_1 T_1 + m_2 T_2}{m_1 + m_2}$

Temperatura

Variazione di temperatura

$$\Delta T = rac{Q}{m} k
ightarrow k = rac{1}{c}$$

Temperatura di equilibrio

$$Teq = rac{m_1 T_1 + m_2 T_2}{m_1 + m_2}$$

$$T_{eq} = \Delta U_1 + \Delta U_2 = 0
ightarrow rac{n_1 c_{v1} T_1 + n_2 c_{v2} T_2}{n_1 c_{v1} + n_2 c_{v2}}$$

Normalizzare la temperatura

$$|rac{\Delta t}{t - da - misurare} - 1| << 1$$

Se la temperatura misurata - la temperatura da misurare, fratto t da misurare - 1, è molto minore di 1, allora la misurazione della T è corretta

Capacità termica

capacità termica, costante caratteristica del corpo \rightarrow quantità di calore necessaria a far variare di $1^{\circ}C$ la temperatura del corpo. **Unità di misura:** $(\frac{cal}{C}; \frac{J}{Kelvin})$

$$C = \frac{Q}{\Delta T}$$

C = cm

Calore specifico

calore specifico della sostanza, capacità termica della massa unitaria. Quantità di calore necessaria a far variare di 1°C la temperatura della massa unitaria $(\frac{cal}{{}^{\circ}Ca}; \frac{J}{{}^{\circ}CKa})$

$$c = \frac{C}{m} = \frac{Q}{m\Delta T}$$

Calore

Equazione fondamentale della termologia \rightarrow calore \rightarrow quantità di calore per far aumentare di 1°C la temperatura di una massa di 1g di H_2O . **Unità di misura**: (cal *oppure* Joule)

$$Q = mc\Delta T$$

Conduzione di calore $ightarrow Q = \lambda Superficie rac{T_1 - T_2}{distanza} tempo$

$$|Q_{ceduto}| = |Q_{assorbito}|$$

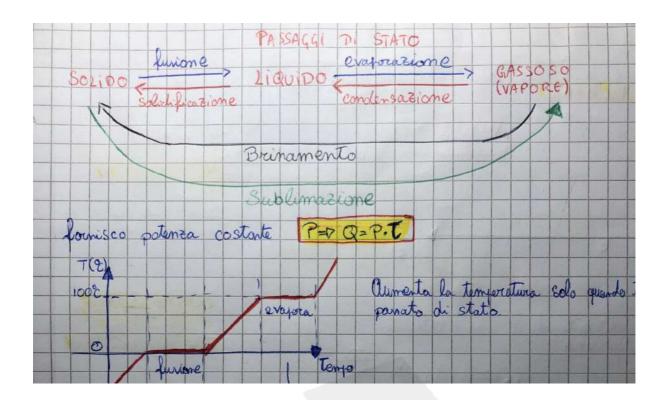
Calore latente

Quantità di calore per far passare di stato la massa unitaria di quella sostanza. La temperatura del sistema aumenta solo quando tutto il sistema è passato di stato. **Unità di misura**: $(\frac{J}{Kg},\frac{cal}{g})$

$$\lambda = rac{Q}{m}
ightarrow Q = \lambda m$$

2

$$\lambda_{h_2o}=rac{79cal}{g}$$
 $\lambda_{h_2o}=rac{343cal}{g}$



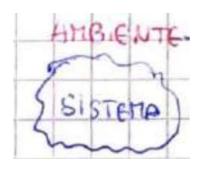
Potenza
$$ightarrow P=Q*tempo$$
 Vaporizzazione $ightarrow \Delta V=\left(rac{m}{p_v}-rac{m}{pa}
ight)$

Termodinamica

• Principio "zero" → se A è in equilibrio termico con B e B è in equilibrio termico con C, allora A è in equilibrio termico con C.

Variabili di stato: (asse x) condizione di equilibrio in tutti i punti del sistema. (Volume, pressione e temperatura)

Funzioni di stato: (asse y) → grandezze esprimibili in funzione delle variabili di stato. (entropia)



Ambiente: ciò che circonda il sistema, con il quale il sistema può scambiare qualcosa.

Sistema:

isolato: non scambia nulla (pareti adiabatiche)

chiuso → scambia energia (gas in un recipiente)

aperto → scambia materia ed energia (cellula corpo)

Gli scambi di energia sono sotto forma di calore o lavoro (termodinamico) → lavoro compiuto dalla pressione.

Equilibrio termodinamico

Termico

 $T_{\rm sistema} = T_{\rm ambiente}$

Le due temperature sono uguali.

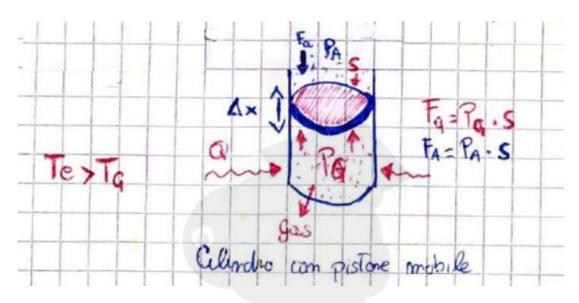
Se **NON** è presente equilibrio termico, c'è scambio di **calore**.

Meccanico

 $P_{\text{sistema}} = P_{\text{ambiente}}$

Le due pressioni sono uguali.

Se **NON** è presente equilibrio meccanico, c'è cambio di **lavoro.**



Se
$$P_{
m gas}
eq P_{
m atm} \Rightarrow F_{
m netta}$$
 sul pistone

Es:
$$P_{
m gas} > P_{
m atm}$$
 $F_{
m gas} = P_{
m gas} s$

Lavoro gas: $F_{
m gas}\,\Delta x=P_{
m gas}\,s\Delta x=P_{
m gas}\,\Delta V$ ightarrow Lavoro termodinamico (area sottesa al volume).

Numero di Avogadro

Numero di particelle contenute in una mole → quantità di sostanza.

Numero Avogadro $\rightarrow 6,022*10^{23}$ $\frac{particelle}{mole}$

 $ext{massa} o m = M*n o M$ = massa molecolare $ext{n}$ = numero di moli

numero di moli $ightarrow n = rac{m}{M}$ oppure $n = rac{numero \quad molecole}{6,022*10^{23}}$

Densità molecolare $\rightarrow N = \frac{numero molecole}{Volume} \rightarrow n_{moli} = \frac{NVolume}{6.022*10^{23}}$

calore specifico molare $\rightarrow c M_{massa}$ $_{molare}$

 $rac{V}{n}=costante$ per qualsiasi tipo di gas.

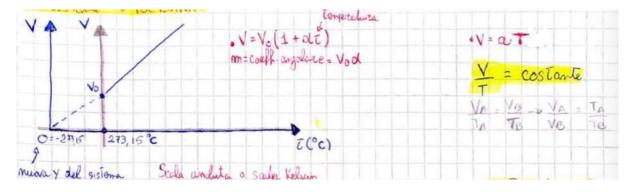
Gas perfetti

Sistema fluido comprimibile. Sono molecole puntiformi (dimensioni trascurabili) rispetto al volume. Le interazioni fra le molecole sono trascurabili, si considerano solamente gli urti tra molecole e tra

molecole e pareti del recipiente ($urti\ elastici \to si\ conserva\ l'E_k$ del sistema). Un gas perfetto è un qualsiasi gas a condizione che esso sia lontano dal punto di condensazione.

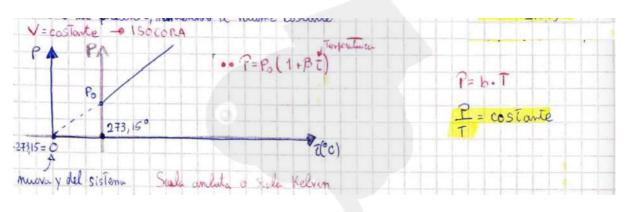
Leggi dei gas: 1 Legge di Gay - Lussac

Variare il volume, mantenendo costante la pressione. $P = \text{costante} \rightarrow \text{Isobara}$.



2 Legge di Gay - Lussac

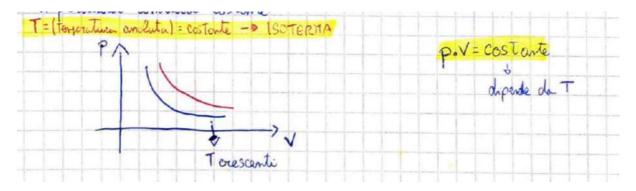
Variare la pressione, mantenendo il volume costante



$$A = \beta = 1 \cdot c^{-1}$$
 $273,15$
 $T(K) = T(c) + 273,15$

3 Legge dei gas → legge di Boyle

Temperatura assoluta costante



Equazione di stato dei gas perfetti $\rightarrow pV = nRT$

$$R \rightarrow 8,31 \frac{J}{K*mol}$$

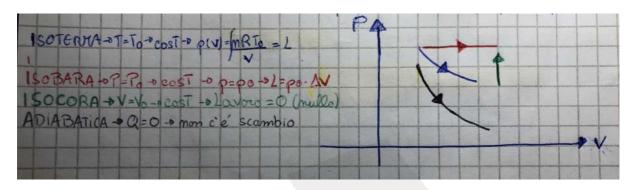
Variabile estensiva → asse x → Volume

Variabile inestensiva → pressione, Temperatura, densità

Trasformazione → processo che permette di passare dallo stato di equilibrio A, allo stato di equilibrio B.

Trasformazione quasi statica → pressione e volume variano lentamente.

Trasformazioni irreversibili → così veloce da fare delle fluttuazioni (il sistema non è all'equilibrio finché non completa la trasformazione).



$\mathbf{Lavoro}: \int p(v)dV \rightarrow \mathbf{Variazione} \ \mathbf{di} \ \mathbf{Volume}$

Lavoro Isocora = 0

Lavoro adiabatica = $-\Delta U = -nc_v \Delta T$

Lavoro isobara = $p_0*\Delta V=p_0*(V_B-V_A)$

Lavoro isoterma = $nRT_0*ln(rac{V_B}{V_A})=Q$

Convenzioni

Q > 0 calore assorbito (temperatura positiva)

Q < 0 calore ceduto (temperatura negativa)

L > 0 espansione del gas \rightarrow lavoro fatto dal sistema sull'ambiente

L < 0 compressione del gas → lavoro fatto dall'ambiente sul sistema

Energia interna

Nei gas perfetti l'energia potenziale è trascurata. La somma delle energie cinetiche delle particelle sarà l'energia interna.

$$U = \sum_{i=1}^n \frac{1}{2} m v_i^2
ightarrow {
m gas\ perfetto}$$

$$K_B = 1,38 * 10^{-23} \frac{J}{K}$$

f = gradi di libertà, N = numero di molecole.

$$N = n * N_{Avogadro}$$

$$R = N_{avogadro} * K_B$$
 $U = (f * rac{1}{2}K_BT) * N$ $U = C\Delta T o Capacità termica$

$$U = nc_v T$$

Energia cinetica media ightarrow gradi di libertà * $rac{1}{2}K_BT$

gas monoatomici (gas nobili) $o frac{3}{2}K_BT$ gas biatomici (idrogeno, ossigeno) $o frac{3}{2}K_BT$ gas poliatomici (metano gassoso) $o frac{6}{2}K_BT = 3K_BT$

Primo principio

1° principio termodinamica $ightarrow \Delta U = Q - L$ Isoterma ightarrow T = cost, U = cost, $\Delta U = 0 \Rightarrow Q = L$

Isocora ightarrow V = cost, L = 0, $\Delta U = Q$, $Q_v = nc_vT$

Isobara ightarrow P = cost, $Q_p = L + \Delta U$, $Q_p = nc_p \Delta T$, $c_p = cv + R$

Adiabatica ightarrow Q = 0, $L=-\Delta U$, S = 0 (adiabatica reversibile), $\Delta S>0$ (adiabatica irreversibile)

Calori specifici molari dei gas $Q=mc\Delta T$ ($rac{J}{mol*K}$)

Volume costante

gas monoatomico $ightarrow c_v = rac{3}{2}R$ gas biatomico $ightarrow c_v = rac{5}{2}R$ gas poliatomico $ightarrow c_v = 3R$

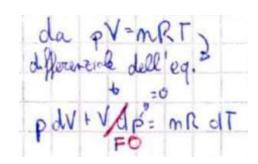
Calcolo calore specifico molecolare a V = costante tra due gas $ightarrow rac{n_1cv_1+n_2cv_2}{n_1+n_2}$

Pressione costante

 $c_p>c_v$ poiché una parte di calore è usata per espandersi

▼ Dimostrazione Mayer

$$\delta Q_p = dU + \delta L \Rightarrow \delta Q_p = nc_v dT + pdV$$



$$\delta Q_p = n c_v dT + n R dT \ \delta Q_p = n (c_v + R) dT = n c_p dt$$

7

$$c_p = c_v + R$$

Relazione di Mayer
$$ightarrow c_p = c_v + R$$
 gas monoatomico $ightarrow c_p = \frac{5}{2}R$ gas biatomico $ightarrow c_p = \frac{7}{2}R$ gas poliatomico $ightarrow c_p = 4R$

Equazione trasformazione adiabatica

Non viene scambiato calore

coefficiente adiabatico
$$\Rightarrow \gamma=rac{c_p}{c_v} \to \gamma=1+rac{R}{c_v} \to rac{R}{c_v}=\gamma-1$$
 $\gamma>1$

$$TV^{\gamma-1} = costante$$
 $pV^{\gamma} = costante$

$$TV^{\gamma-1} = T_0V_0^{\gamma-1}
onumber \ pV^{\gamma} = p_0V_0^{\gamma}$$

▼ Dimostrazione

Dal primo principio $\delta Q=0
ightarrow dU=-\delta L$

Esplicito: $nc_v dt = -pdV$

uso pV=nRT per "ridurre" le variabili $ightarrow p=rac{nRT}{V}$

$$\not\! n c_v dT = \not\!\! n rac{RT}{V} dV$$

Separo le variabili: $rac{c_v dT}{T} = -Rrac{dV}{V}$

Integro tra stato iniziale e stato finale:

$$egin{align} c_v \int_{T_0}^T rac{dT}{T} &= -R \int_{V_0}^V rac{dV}{V} \Rightarrow c_v \ln(rac{T}{T_0}) = -R \ln(rac{V}{V_0}) \ & \ln(rac{T}{T_0})^{c_v} + \ln(rac{V}{V_0})^R = 0 \Rightarrow \ln[(rac{T}{T_0})^{c_v} (rac{V}{V_0})^R] = 0 \ \end{aligned}$$

Se il $\log=0$, allora **l'argomento** del $\log=1$

$$(rac{T}{T_0})^{c_v}(rac{V}{V_0})^R=1$$
Elevo a $rac{1}{c_v} o (rac{T}{T_0})(rac{V}{V_0})^{rac{R}{c_v}}=1$
 $TV^{rac{R}{c_v}}=T_0V_0^{rac{R}{c_v}} o ext{valore numerico}$
 $TV^{rac{R}{c_v}}= ext{costante}$
 $TV^{\gamma-1}= ext{costante}$ $\gamma=rac{c_p}{c_v}$

Oppure, se pongo $T=rac{pV}{nR}
ightarrowrac{pV}{nR}V^{\gamma-1}$

$$PV^{\gamma} = costante$$

Secondo principio termodinamica

Irraggiungibilità dello 0 assoluto = -273,15K

Enunciato di Kelvin

Non è possibile avere un dispositivo che operi in modo ciclico (macchina termica), trasformando tutto il calore estratto da una sorgente, in lavoro.

Non è possibile avere un dispositivo macchina termica, che funzioni scambiando calore con una sola sorgente.

Enunciato di Clausius

Non è possibile avere come unico risultato di una trasformazione, il passaggio da una sorgente a temperatura T_1 più fredda a una sorgente a temperatura T_2 più calda, spontaneamente.

Ciclo termodinamico

Rendimento
$$\Rightarrow \eta = \frac{L_{netto}}{Q_{assorbito}} \Rightarrow \eta = \frac{Q_{assorbito} - |Q_{ceduto}|}{Q_{assorbito}} < 1$$
Rendimento di Carnot $\Rightarrow \eta = 1 - \frac{Q_{ceduto}}{Q_{assorbito}} \Rightarrow \eta_c = 1 - \frac{T_2}{T_1}$

Macchina termica

Dispositivo che trasforma in lavoro, il calore assorbito. Trasformazione chiusa o ciclo, $\Delta U=$

$$Q_{netto} = L_{netto}$$

$$Q_{netto} = Q_{assorbito} - |Q_{ceduto}|$$

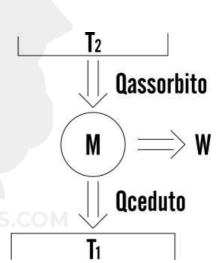
$$L_{netto} = L_{fatto-dal-sistema} -$$

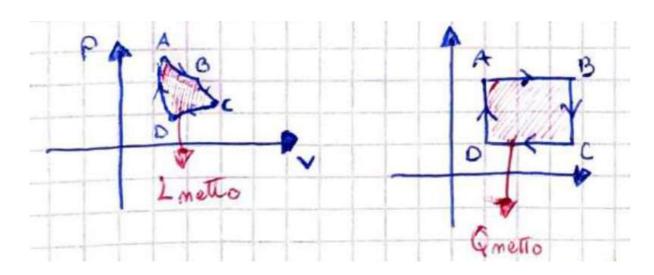
 $|L_{subito-dal-sistema}|$

1°principio
$$\Rightarrow Q_1 = Q_2 + L$$

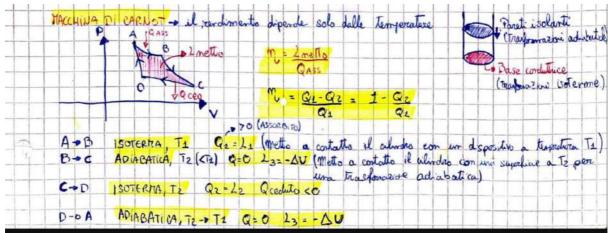
Rendimento
$$ightarrow \eta = 1 - rac{Q_{ceduto}}{Q_{assorbito}}$$

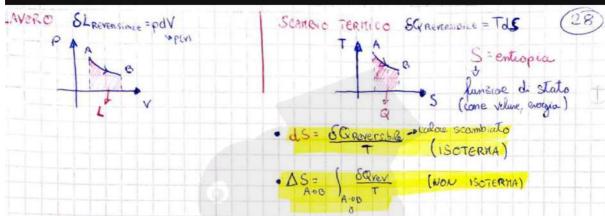
Rendimento
$$ightarrow \eta=1-rac{Q_{ceduto}}{Q_{assorbito}}$$
 Rendimento di Carnot $ightarrow \eta_c=1-rac{T_2}{T_1}$



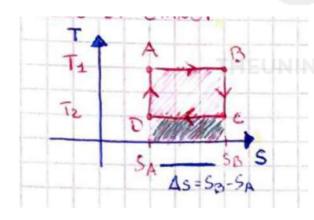


Macchina di Carnot





Ciclo di Carnot



Una trasformazione adiabatica reversibile è detta anche **isoentropica**: $\Delta S=0$

$$dS=rac{\delta Q_{
m rev}}{T}$$

$$Q_{
m ass}=Q_1=Q_{A o B}=T_1\Delta S$$

$$Q_{
m ced} = Q_2 = Q_{C o D} = T_2 \Delta S$$

A o B isoterma

B o C isoentropica

C o D isoterma

D o A isoentropica

$$\eta = 1 - \left|rac{Q_2}{Q_1}
ight| = 1 - \left|rac{T_2\Delta S}{T_1\Delta S}
ight| \Rightarrow \eta_c = 1 - rac{T_2}{T_1}$$

Macchina frigorifera

Massimizzare il calore assorbito.

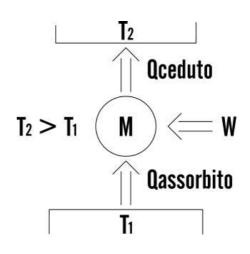
 $Q_{assorbito} > 0$

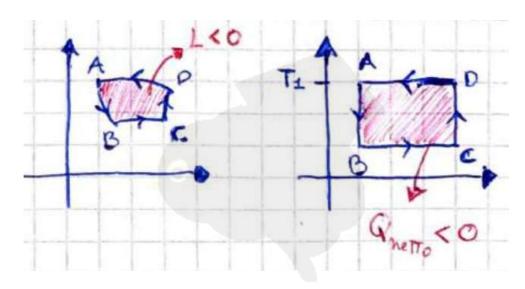
$$egin{aligned} Q_{ceduto} &< 0 \ L &< 0 \ \end{aligned}$$
 1° principio $ightarrow Q_2 + L = Q_1 \$ Efficienza $ightarrow \epsilon = rac{Q_{assor}}{L}
ightarrow \epsilon = rac{Q_{assorbito}}{Q_{ceduto} - Q_{assorbito}} \$ Efficienza di Carnot $ightarrow \epsilon_c = rac{T_1}{T_2 - T_1} \ \end{aligned}$

Pompa di calore

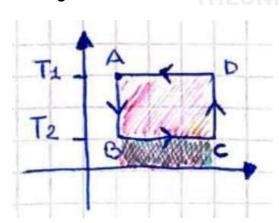
Massimizzare il calore ceduto alla sorgente più calda.

Efficienza
$$ightarrow \epsilon_{pc}=rac{Q_{ceduto}}{L}$$
 Efficienza di Carnot $ightarrow \epsilon_{pc}=rac{T_2}{T_2-T_1}$



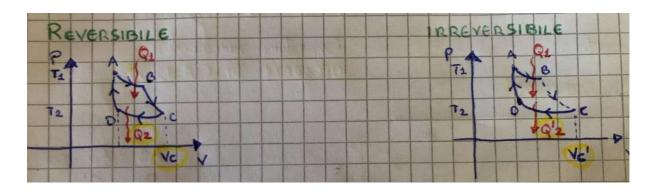


Ciclo Frigorifero di Carnot



$$egin{aligned} oldsymbol{Q}_{
m ced} &= Q_{D o A} = Q_1 (<0) \ oldsymbol{Q}_{
m ass} &= Q_{B o C} = Q_2 (>0) \ egin{aligned} \epsilon_c &= rac{Q_2}{L} o \epsilon_c = rac{Q_2}{Q_1 - Q_2} \Rightarrow \epsilon_c = rac{T_2 \Delta S}{t_1 \Delta S} \Rightarrow \epsilon_c \end{aligned}$$

Ciclo di Carnot



$$\eta_{reversibile} = 1 - rac{|Q_2|}{Q_1}$$

$$\eta_{irreversibile} = 1 - rac{|Q_2'|}{Q_1}$$

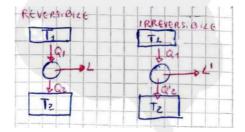
$$\eta_{irreversibile} < \eta_{reversibile}
ightarrow |Q_2'| > |Q_2|$$

Teorema di Carnot

il teorema di Carnot afferma che qualunque macchina termica tra 2 sorgenti ha un η (rendimento) sempre inferiore a $\eta_{\rm carnot}$ reversibile fra le stesse temperature.

 $\eta_{
m irreversibile} < \eta_{
m reversibile}$

$$1 - rac{|Q_2'|}{Q_1} < 1 - rac{|Q_2|}{Q_1} \Rightarrow |Q_2'| > |Q_2|$$



Entropia ($\frac{J}{K}$)

É la misura della concentrazione dell'energia. Se l'energia è **concentrata**, il valore è basso. Se l'energia si **distribuisce**, il valore aumenta.

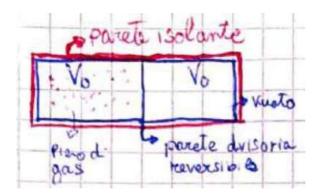
$$dS = rac{\delta Q_{reversibile}}{T}$$

Espansione adiabatica libera (irreversibile)

→ il gas si espande senza compiere lavoro.

Essendo adiabatica,
$$Q=0, L=0, \Delta U=0
ightarrow nc_v, \Delta T=0, T=0, T_i=T_f$$

Per calcolare l'entropia quindi, devo utilizzare un'altra trasformazione, come per esempio l'isoterma, in quanto la temperatura è sempre costante.



$$dS = rac{nRdV}{V} + rac{nc_v dT}{T}$$

▼ Dimostrazione

$$dS = rac{\delta Q_{
m rev}}{T} = rac{\delta L + dU}{T}$$

Per il primo principio $\delta Q_{
m rev} = \delta L + dU.$ A sua volta $\delta L = p dV$

$$rac{pdV+dU}{T}=rac{nRTdV}{TV}+rac{nc_vdT}{T}$$

Essendo un gas perfetto, $dU = nc_v T$

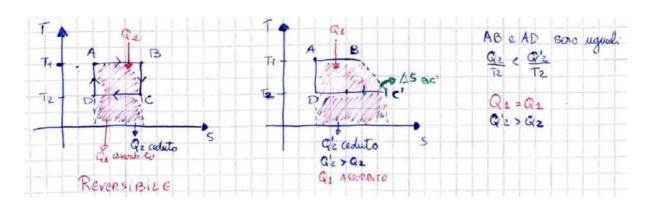
$$rac{nRdV}{V} + rac{nc_v dT}{T}$$

Variazione di entropia gas perfetto

É un indice del grado di irreversibilità di una trasformazione. Più ΔS è maggiore, più è irreversibile.

$$\Delta S_{A o B} = nc_v [ln(rac{T_B V_B^{\gamma-1}}{T_A V_A^{\gamma-1}})]$$
 É valido per tutte perfetto.

 $\acute{\text{E}}$ valido per tutte le trasformazioni \rightarrow gas perfetto.



▼ Dimostrazione

$$\Delta S = \int_{SA}^{SB} ds = nR \int_{VA}^{VB} rac{dV}{V} + nc_v \int_{TA}^{TB} rac{dT}{T} \Rightarrow$$

$$egin{aligned} \Rightarrow nRln(rac{V_B}{V_A}) + nc_vln(rac{T_B}{T_A}) &= nc_v[rac{R}{c_v}ln(rac{V_B}{V_A}) + ln(rac{T_B}{T_A})] \ &\Rightarrow nc_v[ln(rac{V_B}{V_A})^{\gamma-1} + ln(rac{T_B}{T_A})] \ &\Rightarrow \Delta S_{A o B} &= nc_v[ln(rac{T_BV_B^{\gamma-1}}{T_AV_A^{\gamma-1}})] \end{aligned}$$

Legge accrescimento entropia

Reversibile
$$\Rightarrow \Delta S_{universo} = \Delta S_{macchina} + \Delta S_{sorgenti} \Rightarrow \Delta S_u = 0 + \frac{|Q_2|}{T_2} - \frac{|Q_1|}{T_1} = 0$$
Irreversibile $\Rightarrow \Delta S_{universo} = \Delta S_{macchina} + \Delta S_{sorgenti} = 0 + \frac{|Q_2'|}{T_2} - \frac{|Q_1|}{T_1} > 0$
Perché $Q_2' > Q_2 \rightarrow \frac{|Q_2|}{T_2} < \frac{|Q_2'|}{T_2}$

Teorema di Clausius

Per un ciclo chiuso in cui venga scambiato calore con un numero finito di sorgenti Diseguaglianza di Clausius $o \sum_{i=1}^N \frac{Q_i}{T_i} \leq 0 o \mathsf{N}$ = numero sorgenti

Per un ciclo chiuso in cui venga scambiato calore con un numero infinito di sorgenti Integrale di Clausius, sorgenti infinite $\to \int \frac{\delta Q}{T} \le 0$ (temperatura variabile)

$$rac{Q_2}{T_2} = rac{|Q_1|}{T_1}
ightarrow {
m macchina\ reversibile}$$

Calcolo Entropia

• Processo in cui un solido o un liquido varia la sua T scambiando calore

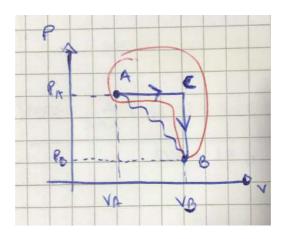
$$\Delta S_{AB} = \int_{T_A}^{T_B} rac{mcdt}{T} = mc*lnrac{T_B}{T_A}$$

· Passaggi di stato

$$\Delta S = rac{Q}{T} = rac{m\lambda}{T}$$

- · Gas perfetto
 - ▼ Dimostrazione

$$egin{aligned} \Delta S_{AB} &= \Delta S_{AC} + \Delta S_{CB} \Rightarrow \ \Delta S_{AC} &= \int_{T_A}^{T_C} rac{nc_p dt}{T} + \Delta S_{CB} = \int_{T_C}^{T_B} rac{nc_v dt}{T} \ \Delta S_{AB} &= nc_p \ln(rac{T_C}{T_A}) + nc_v \ln(rac{T_B}{T_C}) = n[\ln(rac{p_c V_c}{
olimits_R} rac{
olimits_R}{p_A V_A})^{c_p} + \ln(rac{p_B V_B}{p_A V_A})^{c_v}] \ nc_v (\ln(rac{V_B}{V_A})^{\gamma} + \ln(rac{p_B}{p_A})^{c_v}) = nc_v \ln(rac{V_B^{\gamma} p_B}{V_A^{\gamma} p_A}) \end{aligned}$$



$$T_A=rac{P_AV_A}{nR}$$
; $T_B=rac{p_BV_B}{nR}$; $T_C=rac{p_cV_c}{nR}=rac{p_AV_B}{nR}$

$$\Delta S_{AB} = n c_v ln(rac{P_B V_B^{\gamma}}{P_A V_A^{\gamma}})$$

▼ Trasformazioni

• Isoterma reversibile: $Q=L, \Delta U=0$

$$\Delta S = \int rac{Q}{T_0} = rac{1}{T} \int_{V_i}^{V_f} rac{nRT_0}{V} dV = nR \ln(rac{V_f}{V_i})$$

• Isobara reversibile: $Q=nc_p\Delta T$

$$\Delta S_{A o C} = \int_{T_A}^{T_C} rac{nc_p \Delta T}{T} dt = nc_p \ln(rac{T_C}{T_A})$$

• Isocora reversibile: $Q=nc_v\Delta T$

$$\Delta S_{A o D} = \int_{T_A}^{T_D} rac{nc_v \Delta T}{T} = nc_v \ln(rac{T_D}{T_A})$$

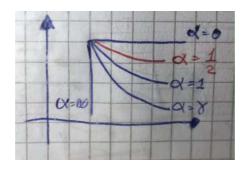
ullet Se è un'adiabatica reversibile, l'argomento del logaritmo è 1 e quindi $\Delta S=0$

Variazione di entropia di una sorgente di calore

Per definizione una sorgente di calore non varia la sua temperatura sia che riceva o che ceda calore. Quindi una sorgente di calore che ceda calore diminuisce la sua entropia e la variazione è data dal calore ceduto diviso la sua temperatura termodinamica. Mentre se assorbe calore la sua entropia aumenta del calore ceduto diviso la sua temperatura termodinamica. Notare come a causa della definizione di calore in termodinamica se un sistema acquista calore da una sorgente aumenta la sua entropia, ma contemporaneamente la sorgente diminuisce la sua entropia: poiché il calore passa spontaneamente dalle sorgenti a temperatura più calda a quelle a temperatura più fredda, a meno che la temperatura della sorgente e del sistema non differiscano per un infinitesimo, la diminuzione di entropia della sorgente è sempre inferiore all'aumento del corpo a temperatura più bassa quindi l'entropia totale aumenta. Analogamente se il sistema perde calore verso una sorgente a temperatura più fredda in questo caso l'aumento di entropia della sorgente è sempre maggiore della diminuzione di entropia del sistema a contatto termico, a meno che la temperatura della sorgente e del sistema non

differiscono per un infinitesimo. Quindi nelle trasformazioni irreversibili tra oggetti con temperatura macroscopicamente differente si ha sempre un aumento dell'entropia totale del sistema.

Trasformazione politropica



 $PV^{\gamma}=costante$ $C_{lpha}=rac{1}{n}rac{\delta Q_{lpha}}{T}$ ightarrow al variare di lpha ho diverse trasformazioni

- lpha=0
 ightarrow P=costante: ISOBARA
- lpha=1
 ightarrow T=costante: ISOTERMA
- $lpha=\infty o PV^lpha=k o V^lpha=rac{k}{P} o V=(rac{k}{P})^{rac{1}{lpha}} o V=costante$: ISOCORA
- $\alpha = \gamma o ext{ADIABATICA}$

THEUNINOTES.COM